Physics Galaxy Volume IV

30

Optics & Modern Physics

Ashish Arora

PHYSICSGALAXY.COM

World's largest encyclopedia of online video courses on High School Students preparing for JEE Main * JEE Advanced * NEET * NSEP/INPhO/IPhO

First Edition : December, 2000

Second Edition : May, 2016

Revised Edition : April, 2023

Title : Physics Galaxy : Volume IV - Optics & Modern Physics (3e)

Language : English

Author's Name : Ashish Arora

Copyright © : 2023 Ashish Arora

No part of this book may be reproduced in a retrieval system or transmitted, in any form or by any means, electronics, mechanical, photocopying, recording, scanning and or without the written permission of the Author/Publisher.

Typeset & Published by :

Career Launcher Infrastructure (P) Ltd.

A-45, Mohan Cooperative Industrial Area, Near Mohan Estate Metro Station, New Delhi - 110044

Marketed by :

G.K. Publications (P) Ltd.

Plot No. 9A, Sector-27A, Mathura Road, Faridabad, Haryana-121003

ISBN : 978-93-95101-02-8

Printer's Details: Printed in India, New Delhi.

For product information : Visit *www.gkpublications.com* or email to *gkp@gkpublications.com*

Dedicated

to

My Parents, Son, Daughter

and

My beloved wife

In his teaching career since 1992 Ashish Arora personally mentored more than 10000 IITians and students who reached global heights in various career and profession chosen. It is his helping attitude toward students with which all his students remember him in life for his contribution in their success and keep connections with him live. Below is the list of some of the successful students in International Olympiad personally taught by him.

NAVNEET LOIWAL	International GOLD Medal in IPhO-2000 at LONDON, Also secured AIR-4 in IIT JEE 2000
	PROUD FOR INDIA : Navneet Loiwal was the first Indian Student who won first International GOLD Medal for our country in International Physics Olympiad.
DUNGRA RAM CHOUDHARY	AIR-1 in IIT JEE 2002
HARSHIT CHOPRA	National Gold Medal in INPhO-2002 and got AIR-2 in IIT JEE-2002
KUNTAL LOYA	A Girl Student got position AIR-8 in IIT JEE 2002
LUV KUMAR	National Gold Medal in INPhO 2003 and got AIR-3 in IIT JEE-2003
RAJHANS SAMDANI	National Gold Medal in INPhO-2003 and got AIR-5 in IIT JEE-2003
SHANTANU BHARDWAJ	International SILVER Medal in IPhO-2002 at INDONESIA
SHALEEN HARLALKA	International GOLD Medal in IPhO-2003 at CHINA and got AIR-46 in IIT JEE-2003
TARUN GUPTA	National GOLD Medal in INPhO-2005
APEKSHA KHANDELWAL	National GOLD Medal in INPhO-2005
ABHINAV SINHA	Hon'ble Mension Award in APhO-2006 at KAZAKHSTAN
RAMAN SHARMA	International GOLD Medal in IPhO-2007 at IRAN and got AIR-20 in IIT JEE-2007
PRATYUSH PANDEY	International SILVER Medal in IPhO-2007 at IRAN and got AIR-85 in IIT JEE-2007
GARVIT JUNIWAL	International GOLD Medal in IPhO-2008 at VIETNAM and got AIR-10 in IIT JEE-2008
ANKIT PARASHAR	National GOLD Medal in INPhO-2008
HEMANT NOVAL	National GOLD Medal in INPhO-2008 and got AIR-25 in IIT JEE-2008
ABHISHEK MITRUKA	National GOLD Medal in INPhO-2009
SARTHAK KALANI	National GOLD Medal in INPhO-2009
ASTHA AGARWAL	International SILVER Medal in IJSO-2009 at AZERBAIJAN
RAHUL GURNANI	International SILVER Medal in IJSO-2009 at AZERBAIJAN
AYUSH SINGHAL	International SILVER Medal in IJSO-2009 at AZERBAIJAN
MEHUL KUMAR	International SILVER Medal in IPhO-2010 at CROATIA and got AIR-19 in IIT JEE-2010
ABHIROOP BHATNAGAR	National GOLD Medal in INPhO-2010
AYUSH SHARMA	International Double GOLD Medal in IJSO-2010 at NIGERIA
AASTHA AGRAWAL	Hon'ble Mension Award in APhO-2011 at ISRAEL and got AIR-93 in IIT JEE 2011
ABHISHEK BANSAL	National GOLD Medal in INPhO-2011
SAMYAK DAGA	National GOLD Medal in INPhO-2011
SHREY GOYAL	National GOLD Medal in INPhO-2012 and secured AIR-24 in IIT JEE 2012
RAHUL GURNANI	National GOLD Medal in INPhO-2012
JASPREET SINGH JHEETA	National GOLD Medal in INPhO-2012
DIVYANSHU MUND	National GOLD Medal in INPhO-2012
SHESHANSH AGARWAL	International SILVER Medal in IAO-2012 at KOREA
SWATI GUPTA	International SILVER Medal in IJSO-2012 at IRAN
PRATYUSH RAJPUT	International SILVER Medal in IJSO-2012 at IRAN
SHESHANSH AGARWAL	International BRONZE Medal in IOAA-2013 at GREECE
SHESHANSH AGARWAL	International GOLD Medal in IOAA-2014 at ROMANIA
SHESHANSH AGARWAL	International SILVER Medal in IPhO-2015 at INDIA and secured AIR-58 in JEE(Advanced)-2015
VIDUSHI VARSHNEY	International SILVER Medal in IJSO-2015 at SOUTH KOREA
AMAN BANSAL	AIR-1 in JEE Advanced 2016
KUNAL GOYAL	AIR-3 in JEE Advanced 2016
GOURAV DIDWANIA	AIR-9 in JEE Advanced 2016
DIVYANSH GARG	International SILVER Medal in IPhO-2016 at SWITZERLAND
NALIN KHANDELWAL	AIR-1 in NEET 2019
MRIDUL AGARWAL	AIR-1 in JEE Advanced 2021

ABOUT THE AUTHOR

The complexities of Physics have given nightmares to many, but the homegrown genius of Jaipur-Ashish Arora has helped millions of students to live their dreams by decoding it.

Newton Law of Gravitation and Faraday's Magnetic induction force apply perfectly well with this unassuming genius. A Pied Piper of students, his webportal https://www.physicsgalaxy.com, The world's largest encyclopedia of video lectures on high school Physics possesses strong gravitational pull and magnetic attraction for students who want to make it big in life.

Ashish Arora, gifted with rare ability to train masterminds, has mentored over 10,000 IITians and Medicos in his past over three decades of teaching sojourn including lots of students made it to

Top 100 in IIT-JEE/JEE(Advance) including multiple times AIR-1 and many in Top-10. Apart from that, he has also groomed hundreds of students for cracking International Physics Olympiad. No wonder his student Navneet Loiwal brought laurel to the country by becoming the first Indian to win a Gold medal at the 2000 - International Physics Olympiad in London (UK).

His special ability to simplify the toughest of the Physics theorems and applications rates him as one among the best Physics teachers in the world. With this, Arora simply defies the logic that perfection comes with age. Even at 18 when he started teaching Physics while pursuing engineering, he was as engaging as he is now. Experience, besides graying his hair, has just widened his horizon.

Now after encountering all tribes of students - some brilliant and some not-so-intelligent - this celebrated teacher has embarked upon a noble mission to make the entire galaxy of Physics inform of his webportal PHYSICSGALAXY.COM to serve and help global students in the subject. Today students from 183 countries are connected with this webportal. On any topic of physics students can post their queries in INTERACT tab of the webportal on which many global experts with Ashish Arora reply to several queries posted online by students.

Dedicated to global students of middle and high school level, his website www.physicsgalaxy.com also has teaching sessions dubbed in American accent and subtitles in 87 languages. For students in India preparing for JEE & NEET, his online courses will be available soon on PHYSICSGALAXY.COM.

Subscribe to

- Complete JEE & NEET Concept Videos on Physics
- **Complete Pre-Foundation Physics for Class 6-7-8**
- **Complete Foundation Physics for Class 9-10**
- Complete NCERT Class 11 & 12 Physics Solutions
- Complete JEE Main 2002-2020 Video Solutions (Online & Offline)
- 700 + Advance Illustration Videos for JEE Advanced
- **Tips & Tricks Guidance Videos for Competitive Exams**
- **Revision Checklist Videos for JEE Main & NEET**
- Exam Memory Maps Videos for JEE Main & NEET

and much more ...

FOREWORD

It has been pleasure for me to follow the progress Er. Ashish Arora has made in teaching and professional career. In the last about three decades he has actively contributed in developing several new techniques for teaching & learning of Physics and driven important contribution to Science domain through nurturing young students and budding scientists. Physics Galaxy is one such example of numerous efforts he has undertaken.

The third edition of Physics Galaxy provides a good coverage of various topics of Mechanics, Thermodynamics and Waves, Optics & Modern Physics and Electricity & Magnetism through dedicated volumes and many new questions included. It would be an important resource for students appearing in competitive examination for seeking admission in engineering and medical streams.

The structure of book is logical and the presentation is innovative. Importantly the book covers some of the concepts on the basis of realistic experiments and examples. The book has been written in an informal style to help students learn faster and more interactively with better diagrams and visual appeal of the content. Each chapter has variety of theoretical and numerical problems to test the knowledge acquired by students. The book also includes solution to all practice exercises with several new illustrations and problems for deeper learning.

I am sure the book will widen the horizons of knowledge in Physics and will be found very useful by the students for developing in-depth understanding of the subject.

Date : April 12, 2023

Prof. Sandeep Sancheti Ph. D. (U.K.), B.Tech. FIETE, FIE (I), SMIEEE

Th. D. (O.K.), D. ICH. FIETE, FIE (I), SMIELE

Vice-Chancellor (Provost) Marwadi University, Rajkot Member Executive Council, Association of Commonwealth Universities, London Former President, AIU, New Delhi Former Vice-Chancellor, SRMIST, Chennai Former President, Manipal University, Jaipur Former-Director NIT Surathkal, NIT New Delhi, NIT Trichy, NIT Calicut, SPA Delhi; Former-Mentor Director NIT Goa, NIT Sikkim, NIT Puducherry Former-Member JEE Apex Board (JAB), MHRD, GoI Former-Chairman, Central Counselling Board (CCB), AIEEE, MHRD, GoI Former-Chairman, Direct Admission of Students Abroad (DASA), MHRD, GoI

PREFACE

For a science student, Physics is the most important subject, unlike to other subjects it requires logical reasoning and high imagination of brain. Without improving the level of physics it is very difficult to achieve a goal in the present age of competitions. To score better, one does not require hard working at least in physics. It just requires a simple understanding and approach to think a physical situation. Actually physics is the surrounding of our everyday life. All the six parts of general physics-Mechanics, Heat, Sound, Light, Electromagnetism and Modern Physics are the constituents of our surroundings. If you wish to make the concepts of physics strong, you should try to understand core concepts of physics in practical approach rather than theoretical. Whenever you try to solve a physics problem, first create a hypothetical approach rather than theoretical. Whenever you try to solve a physics problem, first create a hypothetical world in your imagination about the problem and try to think psychologically, what the next step should be, the best answer would be given by your brain psychology. For making physics strong in all respects and you should try to merge and understand all the concepts with the brain psychologically.

The book PHYSICS GALAXY is designed in a totally different and friendly approach to develop the physics concepts psychologically. The book is presented in five volumes, which covers almost all the core branches of general physics. This part of book, volume 4 covers Modern Physics and Optics. These are most scoring topics of Physics for any competitive or school level exams which helps in building strong applications of the subject. The things you will learn in this book will help in building your overall strength in the branch of Modern Physics and Optics. In this book every chapter is explained in a simple, interactive and experimental way. The book is divided in the six major chapters, first chapters is covering applications of atomic structure followed by the next chapter on photoelectric effect and matter waves. Both of these initial chapters builds foundation of modern physics by understanding characteristics of an atom and atomic spectrum. This chapter also includes the calculation and analysis of electron transition between energy levels of atom and ionization of atom. Photoelectric effect builds a good level of understanding for electron transition effects by absorption of energy. Third chapter covers production and properties of X-Rays and its applications. Next chapter on radioactivity and nuclear physics forms the basis of understanding of nucleus of an atom and also the detailed analysis of stability of nucleus is discussed along with properties of radioactive radiations. The last two chapters at the end, ray optics and wave optics covers the major application of light in form of ray and a wave respectively.

The best way of understanding physics is the experiments and this methodology I am using in my lectures and I found that it helps students a lot in concept visualization. In this book I have tried to translate the things as I used in lectures. After every important section there are several solved examples included with simple and interactive explanations. It might help a student in a way that the student does not require to consult any thing with the teacher. Everything is self explanatory and in simple language.

One important factor in preparation of physics I wish to highlight that most of the student after reading the theory of a concept start working out the numerical problems. This is not the efficient way of developing concepts in brain. To get the maximum benefit of the book students should read carefully the whole chapter at least three or four times with all the illustrative examples and with more stress on some illustrative examples included in the chapter. Practice exercises included after every theory section in each chapter is for the purpose of in-depth understanding of the applications of concepts covered. Illustrative examples are explaining some theoretical concept in the form of an example. After a thorough reading of the chapter students can start thinking on discussion questions and start working on numerical problems.

Exercises given at the end of each chapter are for circulation of all the concepts in mind. There are two sections, first is the discussion questions, which are theoretical and help in understanding the concepts at root level. Second section is of conceptual MCQs which helps in enhancing the theoretical thinking of students and building logical skills in the chapter. Third section of numerical MCQs helps in the developing scientific and analytical application of concepts. Fourth section of advance MCQs with one or more options correct type questions is for developing advance and comprehensive thoughts. Last section is the Unsolved Numerical Problems which includes some simple problems and some tough problems which require the building fundamentals of physics from basics to advance level problems which are useful in preparation of NSEP, INPhO or IPhO.

In this third edition of the book I have included many new questions and solutions in different exercises at practice, conceptual, numerical and advance MCQs to support students who are dependent on their self study and not getting access to teachers for their preparation.

This book has taken a shape just because of motivational inspiration by my mother in 1997 when I just thought to write something for my students. She always motivated and was on my side whenever I thought to develop some new learning methodology for my students.

I don't have words for my best friend my wife Anuja for always being together with me to complete this book in the unique style and format.

I would like to pay my gratitude to Sh. Dayashankar Prajapati in assisting me to complete the task in Design Labs of PHYSICSGALAXY.COM and presenting the book in totally new format of third edition.

At last but the most important person, my father who has devoted his valuable time in finally presenting the book in such a format and a simple language, thanks is a very small word for his dedication in building the base structure of this book.

In this third edition I have tried my best to make this book error free but owing to the nature of work, inadvertently, there is possibility of errors left untouched. I shall be grateful to the readers, if they point out me regarding errors and oblige me by giving their valuable and constructive suggestions via emails for further improvement of the book.

Date : April 12, 2023

Ashish Arora

PHYSICSGALAXY.COM B-80, Model Town, Malviya Nagar, Jaipur-302017 e-mails: ashisharora@physicsgalaxy.com ashash12345@gmail.com

CONTENTS

Chapter 1	Atomic Physics	1-48
	1.1 A Brief History to Atomic Physics	2
	1.2 Thomson's Atomic Model	2
	1.3 Rutherford's Atomic Model	3
	1.4 Bohr's Model of an Atom	3
	1.4.1 First Postulate	4
	1.4.2 Second Postulate	4
	1.4.3 Third Postulate	4
	1.5 Properties of Electron in Bohr's Atomic Model	5
	1.5.1 Radius of n th Orbit in Bohr Model	5
	1.5.2 Velocity of Electron in n th Bohr's Orbit	5
	1.5.3 Angular Velocity of Electron in n th Bohr's Orbit	5
	1.5.4 Frequency of Electron in n th Bohr's Orbit	6
	1.5.5 Time period of Electron in n^{th} Bohr's Orbit	6
	1.5.6. Current in n th Bohr's Orbit	6
	1.5.7 Magnetic Induction at the Nucleus Due to n th Orbit	6
	1.5.8 Magnetic Moment of the n th Bohr's Orbit	6
	1.5.9 Energy of Electron in n th Orbit	6
	1.5.10 Energies of Different Energy Level in Hydrogenic Atoms	7
	1.6 Excitation and Ionization of an Atom	9
	1.6.1 Frequency and Wavelength of Emitted Radiation	11
	1.6.2 Number of Lines Emitted During, de-excitation of an Atom	12
	1.7 The Hydrogen Spectrum	12
	1.7.1 Spectral Series of Hydrogen Atom	12
	1.8 Effect of Mass of Nucleus on Bohr Model	21
	1.9 Use of Bohr Model to Define Hypothetical Atomic Energy Levels	25
	1.10 Atomic Collisions	26
	DISCUSSION QUESTION	33
	CONCEPTUAL MCQS SINGLE OPTION CORRECT	35
	NUMERICAL MCQS SINGLE OPTION CORRECT	38
	ADVANCE MCQS WITH ONE OR MORE OPTION CORRECT	42
	UNSOLVED NUMERICAL PROBLEMS FOR PREPARATION OF NSEP, INPHO & IPHO	45

Chapter 2 **Photo Electric Effect & Matter Waves** 49-98 2.1 Electron Emission Processes 50 2.1.1 Thermionic Emission 50 2.1.2 Photoelectric Emission 50 2.1.3 Secondary Emission 50 2.1.4 Field Emission 50 2.2 Photoelectric Effect 51 2.2.1 Fundamental Laws of Photoelectric Effect 51 2.3 Experimental Study of Photo Electric Effect 55 2.3.1 Kinetic Energies of Electrons Reaching Anode 56 2.3.2 Reversed Potential Across Discharge Tube 57 2.3.3 Cut off Potential or Stopping Potential 57 2.3.4 Effect of Change in Frequency of Light on Stopping Potential 58 2.4 No. of Photon Emitted by Source Per second 62

2.5 Intensity of Light due to a Light Source	62
2.5.1 Photon Flux in a Light Beam	63
2.5.2 Photon Density in a Light Beam	63
2.6 Wave Particle Duality	70
2.6.1 Momentum of a Photon	70
2.7 De-Broglie's Hypothesis	70
2.7.1 Explanation of Bohr's Second Postulate	71
2.8 Radiation Pressure	72
2.8.1 Force Exerted by a Light Beam on a Surface	72
2.8.2 Force Exerted on any Object in the Path of a Light Beam	72
2.8.3 Force Exerted by a Light Beam at Oblique Incidence	73
2.8.4 Recoiling of an Atom Due to Electron Transition	75
2.8.5 Variation in Wavelength of Emitted Photon with State of Motion of an Atom	75
2.8.6 Variation in Wavelength of Photon During Reflection	75
DISCUSSION QUESTION	80
CONCEPTUAL MCQS SINGLE OPTION CORRECT	82
NUMERICAL MCQS SINGLE OPTION CORRECT	86
ADVANCE MCQS WITH ONE OR MORE OPTION CORRECT	92
UNSOLVED NUMERICAL PROBLEMS FOR PREPARATION OF NSEP, INPHO & IPHO	95

Chapter 3	X-rays	99-116
	3.1 Introduction to X-Rays	100
	3.1.1 Types of X-rays	100
	3.2 Production Mechanism of X-rays	100
	3.2.1 Continuous X-rays	100
	3.2.2 Production of Continuous X-rays	100
	3.2.3 Characteristic X-rays	102
	3.2.4 Production of Characteristic X-rays	102
	3.3 Moseley's Law	103
	3.4 Applications of X-rays	103
	DISCUSSION QUESTION	107
	CONCEPTUAL MCQS SINGLE OPTION CORRECT	108
	NUMERICAL MCQS SINGLE OPTION CORRECT	111
	ADVANCE MCQS WITH ONE OR MORE OPTION CORRECT	113

ADVANCE MCQS WITH ONE OR MORE OPTION CORRECT	113
UNSOLVED NUMERICAL PROBLEMS FOR PREPARATION OF NSEP, INPHO & IPHO	115

Chapter 4	Nuclear Physics and Radioactivity	117-186
	4.1 Composition and Structure of The Nucleus	118
	4.1.1 Size of a Nucleus	118
	4.1.2 Strong Nuclear Force and Stability of Nucleus	118
	4.2 Nuclear Binding Energy	119
	4.2.1 Mass Energy Equivalence	124
	4.2.2 Binding Energy Per Nucleon	124
	4.2.3 Variation of Binding Energy per Nucleon with Mass Number	124
	4.3 Radioactivity	127
	4.3.1 Measurement of Radioactivity	127
	4.3.2 Fundamental Laws of Radioactivity	128
	4.3.3 Radioactive Decay Law	128
	4.3.4 Half Life Time	129
	4.3.5 Alternate form of Decay Equation in terms of Half Life Time	129
	4.3.6 Mean Life Time	130
	4.3.7 Calculation of Mean Life Time For a Radioactive Element	130

4.4 Radioactive Series	135
4.4.1 Radioactive Equilibrium	136
4.4.2 Simultaneous Decay Modes of a Radioactive Element	136
4.4.3 Accumulation of a Radioactive Element in Radioactive Series	136
4.5 Nuclear Reactions	140
4.5.1 Q-Value of Nuclear Reaction	141
4.6 Nuclear Fission	141
4.6.1 Fission of Uranium Isotopes and Chain Reaction	142
4.6.2 Liquid Drop Model	143
4.7 Nuclear Fusion	143
4.8 Properties of Radioactive Radiations	152
4.8.1 Alpha Decay	153
4.8.2 Beta Decay	153
4.8.3 Apparent Violation of Conservation Laws in β-decay	154
4.8.4 Pauli's Neutrino Hypothesis	155
4.8.5 Mass Defect Calculation For β-decay	155
4.8.6 Gamma Decay	156
DISCUSSION QUESTION	161
CONCEPTUAL MCQS SINGLE OPTION CORRECT	164
NUMERICAL MCQS SINGLE OPTION CORRECT	168
ADVANCE MCQS WITH ONE OR MORE OPTION CORRECT	174
UNSOLVED NUMERICAL PROBLEMS FOR PREPARATION OF NSEP, INPHO & IPHO	177

187-340

198

198 198

199

200

200

201

5.1 Understanding a Light Ray and Light Beams 188 5.1.1 Different Types of Light Rays 188 5.1.2 Different Types of Light Beams 189 189 5.2 Reflection of Light 190 5.2.1 Regular or Specular Reflection 5.2.2 Irregular or Diffused Reflection 190 5.2.3 How we see an object in our surrounding 190 5.2.4 Laws of Reflection 191 191 5.2.5 Vector Analysis of Laws of Reflection 5.3 Understanding Object and Image in Geometrical Optics 192 5.3.1 Object in Geometrical Optics 192 5.3.2 Image in Geometrical Optics 193 5.4 Reflection and Image formation by a Plane Mirror 194 5.5 Field of View for Image formed by a Plane Mirror 195 5.5.1 Field of View of an image 195 5.5.2 Field of View of a Mirror for an observer 195 5.6 Characteristics of Image formed by a Plane Mirror 196 5.6.1 Characteristic-1 of Image formation by a Plane Mirror 196 5.6.2 Characteristic-2 of Image formation by a Plane Mirror 196 5.6.3 Characteristic-3 of Image formation by a Plane Mirror 197 5.6.4 Characteristic-4 of Image formation by a Plane Mirror 198

5.6.5 Characteristic-5 of Image formation by a Plane Mirror

5.6.6 Characteristic-6 of Image formation by a Plane Mirror

5.6.7 Characteristic-7 of Image formation by a Plane Mirror

5.6.8 Characteristic-8 of Image formation by a Plane Mirror 5.6.9 Characteristic-9 of Image formation by a Plane Mirror

5.6.10 Characteristic-10 of Image formation by a Plane Mirror

5.6.11 Characteristic-11 of Image formation by a Plane Mirror

Chapter 5

Geometrical Optics

5.7	Understanding Shadow Formation	201
	5.7.1 Umbra and Penumbra Regions	202
	5.7.2 Antumbra Region	203
5.8	Spherical Mirrors	206
	5.8.1 Standard terms related to Spherical Mirrors	207
	5.8.2 Focal Length of a Spherical Mirror	207
	5.8.3 Image Formation by a Spherical Mirror using Paraxial Rays	208
	5.8.4 Standard Reflected Light Rays for Image Formation by Spherical Mirrors	208
	5.8.5 Relation in focal length and Radius of Curvature of a Spherical Mirror	209
	5.8.6 Image formation by Concave Mirrors	210
	5.8.7 Image formation by Convex Mirrors	211
	5.8.8 How an observer sees image of an extended object in a spherical mirror	212
	5.8.9 How image produced by a spherical mirror can be obtained on a screen	212
	5.8.10 Sign Convention	213
5.9	Analysis of Image formation by Spherical Mirrors	214
	5.9.1 Mirror Formula for Location of Image	214
	5.9.2 Analyzing Nature of Image Produced by a Spherical Mirror	215
	5.9.3 Magnification Formula for Size and Orientation of Image	215
	5.9.4 Relation in Nature and Orientation of Image	216
	5.9.5 Longitudinal Magnification of Image	216
	5.9.6 Superficial Magnification by a Spherical Mirror	217
	5.9.7 Variation Curves of Image Distance vs Object Distance	218
	5.9.8 Effect of Moving Object and Spherical Mirror on Image	221
	5.9.9 Effect of shifting Principal Axis of a Mirror	223
	5.9.10 Image formation of distant Objects by Spherical Mirrors	224
	5.9.11 Concept of Reversibility of Light	224
5.1	0 Refraction of Light	226
	5.10.1 Absolute Refractive Index of a Medium	226
	5.10.2 Relative Refractive Index of a Medium	226
	5.10.3 Laws of Refraction	227
	5.10.4 Vector form of Snell's Law of Refraction	227
	5.10.5 Image Formation due to Refraction at a Plane Surface	228
	5.10.6 An Object placed in a Denser Medium is seen from Air	228
	5.10.7 An Object placed in Air and seen from a Denser Medium	229
	5.10.8 Shift of image due to Refraction of Light by a Glass Slab	231
	5.10.9 Shift due to Refraction of Light by a Hollow thin walled Glass Box placed inside a Denser Medium	232
	5.10.10 Lateral Displacement of Light Ray by a Glass Slab	232
	5.10.11 Lateral Displacement of a Light Ray due to Refraction by Multiple Glass Slabs	233
	5.10.12 Concept of Reflection by a Thick Mirror	233
5.1	1 Refraction of Light by Spherical Surfaces	239
	5.11.1 Analysis of Image formation by Spherical Surfaces	240
	5.11.2 Lateral Magnification of Image by Refraction	243
	5.11.3 Longitudinal Magnification of Image	243
	5.11.4 Effect of motion of Object or Refracting Surface on Image	243
5.1	2 Total Internal Reflection	247
	5.12.1 Refraction of Light Rays from a Source in a Denser Medium to Air	248
	5.12.2 Cases of Grazing Incidence of Light on a Media Interface	249
	5.12.3 Refraction by a Transparent Medium of varying Refractive Index	249
	5.12.4 Total Internal Reflection in a Medium of varying Refractive Index	250
	5.12.5 Equation of Trajectory of a Light Ray in a Medium of varying Refractive Index	250
5.1	3 Prism	254
	5.13.1 Refraction of Light through a Trihedral Prism	255
	5.13.2 Deviation Produced by a Small Angled Prism	256
	5.13.3 Maximum Deviation of Light Ray by a Prism	256
	5.13.4 Condition of a Light Ray to pass through a Prism	257

5.14 Thin Lenses	263
5.14.1 Converging and Diverging Behaviour of Lenses	264
5.14.2 Primary and Secondary Focus of a Lens	264
5.14.3 Standard Reflected Light Rays for Image Formation by Thin Lenses	265
5.14.4 Image Formation by Convex Lenses	266
5.14.5 Image formation by Concave Lenses	267
5.14.6 Focal length of a thin lens	268
5.14.7 Focal length of different types of standard thin lenses	268
5.15 Analysis of Image Formation by Thin Lenses	269
5.15.1 Lateral Magnification in Image Formation by a Thin Lens	269
5.15.2 Longitudinal Magnification by a Thin Lens	270
5.15.3 Variation Curves of Image Distance vs Object Distance for a Thin Lens	270
5.15.4 Effect of motion of Object and Lens on Image	271
5.16 Optical Power of a Thin Lens or a Spherical Mirror	278
5.16.1 Combination of Thin Lenses	279
5.16.2 Combination of Thin Lenses and Mirrors	280
5.16.3 Deviation in a Light Ray due to Refraction through a Thin Lens	283
5.16.4 Combination of Two Thin Lenses at some Separation	283
5.16.5 Multiple images produced by a Lens made up of different materials	284
5.17 Lens and Mirrors submerged in a Transparent Medium	285
5.18 Displacement Method Experiment to measure focal length of a Convex Lens	285
5.18.1 Condition of formation of Real Image by a Thin Convex Lens	286
5.18.2 Displacement Method Experiment	286
5.19 Dispersion of Light	2 90 291
5.19.1 Dispersion of White Light through a Glass Slab	291
5.19.1 Dispersion of White Light through a Glass Stab 5.19.2 Dispersion of White Light through a Glass Prism	292
5.19.2 Dispersion of white Light through a Glass Frism 5.19.3 Dispersive Power of a Prism Material	292
5.19.5 Dispersive Fower of a Frism Material 5.19.4 Dispersion Analysis for a Small Angled Prism	293
5.19.4 Dispersion Analysis for a small Angled Frism 5.19.5 Achromatic Prism Combination	293
5.19.5 Direct Vision Prism Combination	294
5.20 Optical Aberrations in Lenses and Mirrors	295 295
5.20.1 Spherical Aberrations	295
5.20.2 Methods to Reduce Spherical Aberrations 5.20.3 Chromatic Aberration in a Lens	293
	298
5.20.4 Achromatic Combination of Lenses	
5.21 Optical Instruments	301
5.21.1 The Human Eye	301
5.21.2 Camera	302
5.21.3 Angular Size of Objects and Images	302
5.21.4 Simple Microscope	302
5.21.5 Magnification of Simple Microscope	303
5.21.6 Compound Microscope	303
5.21.7 Magnifying Power of Compound Microscope	304
5.21.8 Tube Length of a Compound Microscope	304
5.21.9 Refracting Astronomical Telescope	304
5.21.10 Magnifying Power of a Refracting Telescope	305
5.21.11 Tube Length of a Refracting Telescope	305
5.21.12 Reflecting Telescope	306
5.21.13 Terrestrial Telescope	306
5.21.14 Galilean Telescope	306
DISCUSSION QUESTION	311
CONCEPTUAL MCQS SINGLE OPTION CORRECT	312
NUMERICAL MCQS SINGLE OPTION CORRECT	319
ADVANCE MCQS WITH ONE OR MORE OPTION CORRECT	325
UNSOLVED NUMERICAL PROBLEMS FOR PREPARATION OF NSEP, INPHO & IPHO	330

Chapter 6

6.1 Wave Theory	342
6.1.1 Dual Nature of Light	342
6.1.2 Wavefront of a Light Wave	342
6.1.3 Huygen's Wave Theory	343
6.2 Interference of Light	343
6.2.1 Coherent Sources of Light and Condition of Coherence	344
6.2.2 Theory of Interference of Two Waves	344
6.2.3 Interference of two Coherent Waves of Same Amplitude	345
6.2.4 Intensity of Light at the Point of Interference	345
6.2.5 Condition of Path Difference for Interference	346
6.3 Young's Double Slit Experiment (YDSE)	349
6.3.1 Analysis of Interference Pattern in YDSE	349
6.3.2 Position of Bright and Dark Fringes in YDSE Interference Pattern	350
6.3.3 Light Intensity on Screen in YDSE Setup	350
6.3.4 Fringe Width in YDSE Interference Pattern	351
6.4 Modifications in YDSE Setup	353
6.4.1 Effect of Changing the direction of Incident Light in YDSE	353
6.4.2 Effect of Submerging YDSE Setup in a Transparent Medium	354
6.4.3 Path difference between two parallel waves due to a denser medium in path of one beam	354
6.4.4 Effect of Placing a Thin Transparent Film in front of one of the slits in YDSE Setup	354
6.4.5 Concept of z-value in Interference Pattern of YDSE	355
6.4.6 Use of White Light in YDSE	357
6.4.7 Effect of Changing Slit Width in YDSE Setup	357
6.4.8 Fresnel's Biprism as a Limiting case of YDSE	358
6.4.9 Lloyd's Mirror as a limiting case of YDSE	359
6.4.10 Billet Split Lens as a limiting case of YDSE	360
6.4.11 Interference of Two Converging Coherent Parallel Beams of Light	360
6.5 Interference by Thin Films	366
6.5.1 Interference due to Thin Film in Reflected Light at Near Normal Incidence	367
6.5.2 Interference due to Thin Film in Transmitted Light a Near Normal Incidence	368
6.5.3 Interference due to a Thin Liquid Film on Glass	368
6.5.4 Interference in Reflected Light by a Very Thin Film in Air	368
6.5.5 Interference in Reflected Light from a Thin Film for Oblique Incidence	368
6.5.6 Interference in Transmitted Light from a Thin Film for Oblique Incidence	369
6.5.7 Interference in Reflected Light due to Thin Wedge shaped Film	370
6.5.8 Interference by an Air Wedge	371
6.5.9 Shape of Interference Fringes in Reflected Light from different Air Wedges	371
6.5.10 Shape of Interference Fringes due to different types of Sources	371
6.6 Diffraction of Light	375
6.6.1 Explanation of Diffraction by Huygen's Wave Theory	375
6.6.2 Types of Diffraction of Light	376
6.6.3 Diffraction of Light by a Single Slit	376
6.6.4 Analysis of Diffraction of Light by a Single Slit	377
6.6.5 Diffraction Minima due to Single Slit	378
6.6.6 Diffraction Maxima due to Single Slit	378
6.6.7 Observing Single Slit Diffraction Pattern on a Screen	379
6.6.8 Difference between Double Slit Interference and Single Slit Diffraction Patterns	379
6.6.9 Illumination Pattern due to Diffraction by a Single Slit	380
6.6.10 Diffraction by a Small Circular Aperture	380
6.7 Polarization of Light	382
6.7.1 Representation of Unpolarized and Polarized Light	383
6.7.2 Circularly and Elliptically Polarized Light	384

6.8 Methods of Polarizing an Ordinary Light	384
6.8.1 Polarization by Reflection	384
6.8.2 Brewster's Law	385
6.8.3 Polarization by Refraction	385
6.8.4 Polarization by Double Refraction	385
6.8.5 Polarization by Dichroism	386
6.8.6 Polarization by Scattering	386
6.8.7 Malus' Law	387
6.8.8 Intensity of Polarized light through a Polaroid (Polarizer)	387
6.8.9 Optical Activity of Substances	388
DISCUSSION QUESTION	391
CONCEPTUAL MCQS SINGLE OPTION CORRECT	392
NUMERICAL MCQS SINGLE OPTION CORRECT	395
ADVANCE MCQS WITH ONE OR MORE OPTION CORRECT	399
UNSOLVED NUMERICAL PROBLEMS FOR PREPARATION OF NSEP, INPHO & IPHO	401

ANSWERS & SOLUTIONS

Chapter 1	Atomic Physics	409 - 421
Chapter 2	Photo Electric Effect & Matter Waves	422 - 436
Chapter 3	X-rays	437 - 442
Chapter 4	Nuclear Physics and Radioactivity	443 - 458
Chapter 5	Geometrical Optics	459 - 507
Chapter 6	Wave Optics	508 - 529

_