

Electrostatics & Current Electricity

Ashish Arora Mentor & Founder

PHYSICSGALAXY.COM

World's largest encyclopedia of online video courses on High School Students preparing for JEE Main * JEE Advanced * NEET * KVPY * NSEP/INPhO/IPhO

First Edition : December, 2000

Second Edition : May, 2016

Revised Edition : March, 2023

Title : Physics Galaxy : Vol. IIIA - Electrostatics & Current Electricity (3rd edition)

Language : English

Author's Name : Ashish Arora

Copyright © : 2023 Ashish Arora

No part of this book may be reproduced in a retrieval system or transmitted, in any form or by any means, electronics, mechanical, photocopying, recording, scanning and or without the written permission of the Author/Publisher.

Typeset & Published by :

Career Launcher Infrastructure (P) Ltd.

A-45, Mohan Cooperative Industrial Area, Near Mohan Estate Metro Station, New Delhi - 110044

Marketed by :

G.K. Publications (P) Ltd.

Plot No. 9A, Sector-27A, Mathura Road, Faridabad, Haryana-121003

ISBN : 978-93-94168-59-6

Printer's Details: Printed in India, New Delhi.

For product information :

Visit *www.gkpublications.com* or email to *gkp@gkpublications.com*

Dedicated

to

My Parents, Son, Daughter

and

My beloved wife

In his teaching career since 1992 Ashish Arora personally mentored more than 10000 IITians and students who reached global heights in various career and profession chosen. It is his helping attitude toward students with which all his students remember him in life for his contribution in their success and keep connections with him live. Below is the list of some of the successful students in International Olympiad personally taught by him.

NAVNEET LOIWAL	International GOLD Medal in IPhO-2000 at LONDON, Also secured AIR-4 in IIT JEE 2000
	PROUD FOR INDIA : Navneet Loiwal was the first Indian Student who won first International GOLD Medal
	for our country in International Physics Olympiad.
DUNGRA RAM CHOUDHARY	AIR-1 in IIT JEE 2002
HARSHIT CHOPRA	National Gold Medal in INPhO-2002 and got AIR-2 in IIT JEE-2002
KUNTAL LOYA	A Girl Student got position AIR-8 in IIT JEE 2002
LUV KUMAR	National Gold Medal in INPhO-2003 and got AIR-3 in IIT JEE-2003
RAJHANS SAMDANI	National Gold Medal in INPhO-2003 and got AIR-5 in IIT JEE-2003
SHANTANU BHARDWAJ	International SILVER Medal in IPhO-2002 at INDONESIA
SHALEEN HARLALKA	International GOLD Medal in IPhO-2003 at CHINA and got AIR-46 in IIT JEE-2003
TARUN GUPTA	National GOLD Medal in INPhO-2005
APEKSHA KHANDELWAL	National GOLD Medal in INPhO-2005
ABHINAV SINHA	Hon'ble Mension Award in APhO-2006 at KAZAKHSTAN
RAMAN SHARMA	International GOLD Medal in IPhO-2007 at IRAN and got AIR-20 in IIT JEE-2007
PRATYUSH PANDEY	International SILVER Medal in IPhO-2007 at IRAN and got AIR-85 in IIT JEE-2007
GARVIT JUNIWAL	International GOLD Medal in IPhO-2008 at VIETNAM and got AIR-10 in IIT JEE-2008
ANKIT PARASHAR	National GOLD Medal in INPhO-2008
HEMANT NOVAL	National GOLD Medal in INPhO-2008 and got AIR-25 in IIT JEE-2008
ABHISHEK MITRUKA	National GOLD Medal in INPhO-2009
SARTHAK KALANI	National GOLD Medal in INPhO-2009
ASTHA AGARWAL	International SILVER Medal in IJSO-2009 at AZERBAIJAN
RAHUL GURNANI	International SILVER Medal in IJSO-2009 at AZERBAIJAN
AYUSH SINGHAL	International SILVER Medal in IJSO-2009 at AZERBAIJAN
MEHUL KUMAR	International SILVER Medal in IPhO-2010 at CROATIA and got AIR-19 in IIT JEE-2010
ABHIROOP BHATNAGAR	National GOLD Medal in INPhO-2010
AYUSH SHARMA	International Double GOLD Medal in IJSO-2010 at NIGERIA
AASTHA AGRAWAL	Hon'ble Mension Award in APhO-2011 at ISRAEL and got AIR-93 in IIT JEE 2011
ABHISHEK BANSAL	National GOLD Medal in INPhO-2011
SAMYAK DAGA	National GOLD Medal in INPhO-2011
SHREY GOYAL	National GOLD Medal in INPhO-2012 and secured AIR-24 in IIT JEE 2012
RAHUL GURNANI	National GOLD Medal in INPhO-2012
JASPREET SINGH JHEETA	National GOLD Medal in INPhO-2012
DIVYANSHU MUND	National GOLD Medal in INPhO-2012
SHESHANSH AGARWAL	International SILVER Medal in IAO-2012 at KOREA
SWATI GUPTA	International SILVER Medal in IJSO-2012 at IRAN
PRATYUSH RAJPUT	International SILVER Medal in IJSO-2012 at IRAN
SHESHANSH AGARWAL	International BRONZE Medal in IOAA-2013 at GREECE
SHESHANSH AGARWAL	International GOLD Medal in IOAA-2014 at ROMANIA
SHESHANSH AGARWAL	International SILVER Medal in IPhO-2015 at INDIA and secured AIR-58 in JEE(Advanced)-2015
VIDUSHI VARSHNEY	International SILVER Medal in IJSO-2015 at SOUTH KOREA
AMAN BANSAL	AIR-1 in JEE Advanced 2016
KUNAL GOYAL	AIR-3 in JEE Advanced 2016
GOURAV DIDWANIA	AIR-9 in JEE Advanced 2016
DIVYANSH GARG	International SILVER Medal in IPhO-2016 at SWITZERLAND
NALIN KHANDELWAL	AIR-1 in NEET 2019
MRIDUL AGARWAL	AIR-1 in JEE Advanced 2021
mail of none will	the third part in the second second

ABOUT THE AUTHOR

The complexities of Physics have given nightmares to many, but the homegrown genius of Jaipur-Ashish Arora has helped millions of students to live their dreams by decoding it.

Newton Law of Gravitation and Faraday's Magnetic induction force apply perfectly well with this unassuming genius. A Pied Piper of students, his webportal https://www.physicsgalaxy.com, The world's largest encyclopedia of video lectures on high school Physics possesses strong gravitational pull and magnetic attraction for students who want to make it big in life.

Ashish Arora, gifted with rare ability to train masterminds, has mentored over 10,000 IITians and Medicos in his past over three decades of teaching sojourn including lots of students made it to

Top 100 in IIT-JEE/JEE(Advance) including multiple times AIR-1 and many in Top-10. Apart from that, he has also groomed hundreds of students for cracking International Physics Olympiad. No wonder his student Navneet Loiwal brought laurel to the country by becoming the first Indian to win a Gold medal at the 2000 - International Physics Olympiad in London (UK).

His special ability to simplify the toughest of the Physics theorems and applications rates him as one among the best Physics teachers in the world. With this, Arora simply defies the logic that perfection comes with age. Even at 18 when he started teaching Physics while pursuing engineering, he was as engaging as he is now. Experience, besides graying his hair, has just widened his horizon.

Now after encountering all tribes of students - some brilliant and some not-so-intelligent - this celebrated teacher has embarked upon a noble mission to make the entire galaxy of Physics inform of his webportal PHYSICSGALAXY.COM to serve and help global students in the subject. Today students from 183 countries are connected with this webportal. On any topic of physics students can post their queries in INTERACT tab of the webportal on which many global experts with Ashish Arora reply to several queries posted online by students.

Dedicated to global students of middle and high school level, his website *www.physicsgalaxy.com* also has teaching sessions dubbed in American accent and subtitles in 87 languages. For students in India preparing for JEE & NEET, his online courses will be available soon on PHYSICSGALAXY.COM.

FOREWORD

It has been pleasure for me to follow the progress Er. Ashish Arora has made in teaching and professional career. In the last about three decades he has actively contributed in developing several new techniques for teaching & learning of Physics and driven important contribution to Science domain through nurturing young students and budding scientists. Physics Galaxy is one such example of numerous efforts he has undertaken.

The third edition of Physics Galaxy provides a good coverage of various topics of Mechanics, Thermodynamics and Waves, Optics & Modern Physics and Electricity & Magnetism through dedicated volumes and many new questions included. It would be an important resource for students appearing in competitive examination for seeking admission in engineering and medical streams.

The structure of book is logical and the presentation is innovative. Importantly the book covers some of the concepts on the basis of realistic experiments and examples. The book has been written in an informal style to help students learn faster and more interactively with better diagrams and visual appeal of the content. Each chapter has variety of theoretical and numerical problems to test the knowledge acquired by students. The book also includes solution to all practice exercises with several new illustrations and problems for deeper learning.

I am sure the book will widen the horizons of knowledge in Physics and will be found very useful by the students for developing in-depth understanding of the subject.

Date : March 11, 2023

Prof. Sandeep Sancheti Ph. D. (U.K.), B.Tech. FIETE, FIE (I), SMIEEE

Vice-Chancellor (Provost) Marwadi University, Rajkot Member Executive Council, Association of Commonwealth Universities, London Former President, AIU, New Delhi Former Vice-Chancellor, SRMIST, Chennai Former President, Manipal University, Jaipur Former-Director NIT Surathkal, NIT New Delhi, NIT Trichy, NIT Calicut, SPA Delhi; Former-Mentor Director NIT Goa, NIT Sikkim, NIT Puducherry Former-Member JEE Apex Board (JAB), MHRD, Gol Former-Chairman, Central Counselling Board (CCB), AIEEE, MHRD, Gol Former-Chairman, Direct Admission of Students Abroad (DASA), MHRD, Gol

PREFACE

For a science student, Physics is the most important subject, unlike to other subjects it requires logical reasoning and high imagination of brain. Without improving the level of physics it is very difficult to achieve a goal in the present age of competitions. To score better, one does not require hard working at least in physics. It just requires a simple understanding and approach to think a physical situation. Actually physics is the surrounding of our everyday life. All the six parts of general physics-Mechanics, Heat, Sound, Light, Electromagnetism and Modern Physics are the constituents of our surroundings. If you wish to make the concepts of physics strong, you should try to understand core concepts of physics in practical approach rather than theoretical. Whenever you try to solve a physics problem, first create a hypothetical approach rather than theoretical. Whenever you try to think psychologically, what the next step should be, the best answer would be given by your brain psychology. For making physics strong in all respects and you should try to merge and understand all the concepts with the brain psychologically.

The book PHYSICS GALAXY is designed in a totally different and friendly approach to develop the physics concepts psychologically. The book is presented in five volumes, which covers almost all the core branches of general physics. This part of book, volume 3A covers Electrostatics, Capacitance and Current Electricity. These are most critical topics of Physics for building strong calculus based applications. The things you will learn in this book will form a major foundation for understanding of the branch electricity and magnetism as a core fundamental. In this book every chapter is explained in a simple, interactive and experimental way. The book is divided in the three major chapters, first two chapters covering all the complete applications of electric field and electric potential due to charged bodies including the applications of electrical interaction energy as well as field energy associated with different configuration of conductors. Third chapter covers the understanding and applications of electric current in different types of electric circuits with several applications on heating effects of current and devices used to measure electrical properties in a circuit.

The best way of understanding physics is the experiments and this methodology I am using in my lectures and I found that it helps students a lot in concept visualization. In this book I have tried to translate the things as I used in lectures. After every important section there are several solved examples included with simple and interactive explanations. It might help a student in a way that the student does not require to consult any thing with the teacher. Everything is self explanatory and in simple language.

One important factor in preparation of physics I wish to highlight that most of the student after reading the theory of a concept start working out the numerical problems. This is not the efficient way of developing concepts in brain. To get the maximum benefit of the book students should read carefully the whole chapter at least three or four times with all the illustrative examples and with more stress on some illustrative examples included in the chapter. Practice exercises included after every theory section in each chapter is for the purpose of in-depth understanding of the applications of concepts covered. Illustrative examples are explaining some theoretical concept in the form of an example. After a thorough reading of the chapter students can start thinking on discussion questions and start working on numerical problems.

Exercises given at the end of each chapter are for circulation of all the concepts in mind. There are two sections, first is the discussion questions, which are theoretical and help in understanding the concepts at root level. Second section is of conceptual MCQs which helps in enhancing the theoretical thinking of students and building logical skills in the chapter. Third section of numerical MCQs helps in the developing scientific and analytical application of concepts. Fourth section of advance MCQs with one or more options correct type questions is for developing advance and comprehensive thoughts. Last section is the Unsolved Numerical Problems which includes some simple problems and some tough problems which require the building fundamentals of physics from basics to advance level problems which are useful in preparation of NSEP, INPhO or IPhO.

In this third edition of the book I have included many new questions and solutions in different exercises at practice, conceptual, numerical and advance MCQs to support students who are dependent on their self study and not getting access to teachers for their preparation.

This book has taken a shape just because of motivational inspiration by my mother in 1997 when I just thought to write something for my students. She always motivated and was on my side whenever I thought to develop some new learning methodology for my students.

I don't have words for my best friend my wife Anuja for always being together with me to complete this book in the unique style and format.

I would like to pay my gratitude to Sh. Dayashankar Prajapati in assisting me to complete the task in Design Labs of PHYSICSGALAXY.COM and presenting the book in totally new format of third edition.

At last but the most important person, my father who has devoted his valuable time in finally presenting the book in such a format and a simple language, thanks is a very small word for his dedication in building the base structure of this book.

In this third edition I have tried my best to make this book error free but owing to the nature of work, inadvertently, there is possibility of errors left untouched. I shall be grateful to the readers, if they point out me regarding errors and oblige me by giving their valuable and constructive suggestions via emails for further improvement of the book.

Date : March 11, 2023

Ashish Arora

PHYSICSGALAXY.COM B-80, Model Town, Malviya Nagar, Jaipur-302017 e-mails: ashisharora@physicsgalaxy.com ashash12345@gmail.com

CONTENTS

Chapter 1	Electrostatics	1-192
	1.1 Charge & its Characteristics	2
	1.1.1 Charging of Metallic and Non-metallic Bodies	2
	1.1.2 Friction Electricity	3
	1.1.3 Quantization of Charge	3
	1.1.4 Conservation of Charge	3
	1.1.5 Charging by Conduction	3
	1.1.6 Charge Distribution on an Isolated Conductor	4
	1.1.7 Concept of Charge Induction in Metal Bodies	4
	1.1.8 Charge Induction in Non-Metals	4
	1.1.9 Gold Leaf Electroscope	5
	1.2 Coulomb's Law	5
	1.2.1 Coulomb's Law in Vector Form	6
	1.2.2 Force Dependency on Medium	6
	1.2.3 Limitations of Coulomb's Law	7
	1.2.4 Principle of Superposition for Electric Forces	8
	1.2.5 Equilibrium of three particles under Electrostatic Forces	8
	1.2.6 Stable and Unstable Equilibrium of a Charge Particle between Two Fixed Charges	9
	1.3 Electric Field	18
	1.3.1 Strength of Electric Field	19
	1.3.2 Electric Force on Charges in Electric Field	20
	1.3.3 Motion of Charge Particle in Electric Field	20
	1.3.4 Milikan Oil Drop Experiment	20
	1.4 Electric Field Strength due to a Point Charge	21
	1.5 Electric Field Strength due to an Extended Body	27
	1.5.1 Electric Field Strength due to a Uniformly Charged Rod	27
	1.5.2 Electric Field due to a Uniformly Charged Long Thread	29
	1.5.3 Electric Field due to a Uniformly Charged Semi-infinite Thread	29
	1.5.4 Electric Field Strength at a General Point due to a Uniformly Charged Rod	31
	1.5.5 Electric Field due to a Uniformly Charged Ring at its Center	32
	1.5.6 Electric Field due to a Uniformly Charged Ring with a cut	33
	1.5.7 Electric Field due to a Uniformly Charged Ring at its Axial Point	33
	1.5.8 Electric Field due to a Charged Circular Arc	34
	1.6 Electric Field Strength due to Surface and Volume charge distributions	39
	1.6.1 Electric Field Strength due to a Uniformly Surface Charged Disc	39
	1.6.2 Electric Field Strength due to a Large Uniformly Charged Sheet	40
	1.6.3 Alternative Method of Electric Field Calculation by a Large Uniformly Charged Sheet	41
	1.6.4 Electric Field Strength in Vicinity of Center of a Uniformly Charged Disc	41
	1.6.5 Electric Field Strength due to a Uniformly Charged Hollow Hemispherical Cup	42
	1.7 Charge Distribution on a Metal Body	42
	1.7.1 Electric Field Strength due to a Large Uniformly Charged Conducting Sheet	43
	1.7.2 Charge Induction in Metal Bodies	43
	1.7.3 Charge Induction in Parallel Metal Plates in Uniform Electric Field	43
	1.7.4 Electric Field Strength due to a Uniformly Charged Conducting Sphere	44
	1.7.5 Variation Curve of Electric Field Strength with Distance for a Uniformly Charged Conducting Sphere	
	1.7.6 Electric Field Strength due to a Uniformly Charged Hollow Sphere	45
	1.7.7 Electric Field Strength due to a Uniformly Charged Non-conducting Sphere	45
	1.7.8 Variation Curve of Electric Field due to a Uniformly Charged Non-conducting Sphere with Distance	
	1.7.9 Electric Field Strength due to a Long Uniformly Charged Conducting Cylinder	46
	1.7.10 Electric Field Strength due to a Long Uniformly Charged Non-conducting Cylinder	47
	1.7.11 Variation of Electric Field Strength for a Uniformly Charged Long Cylinder 1.7.12 Electric Field due to a Large Thick Charged Sheet	48 48
	1.8 Electric Field Strength due to Non Uniformly Charged Bodies	51

1.8.1 Electric Field Strength due to a Non-uniformly Charged Rod	51
1.8.2 Electric Field Strength due to a Non-uniformly Charged Ring	52
1.8.3 Electric Field due to a Non-uniformly Charged Sphere	53
1.8.4 Electric Field due to a Large Non Uniformly Charged Slab	54
1.8.5 Electric Field Inside a Cavity of Charged Body	55
1.9 Electrostatic Potential Energy	60
1.9.1 Electrostatic Interaction Energy	61
1.9.2 Interaction Energy of a System of Two Charged Particles	61
1.9.3 Interaction Energy for a System of Multiple Charged Particles	62
1.9.4 Closest Distance of Approach between Two Charges	62
1.10 Electric Potential	67
1.10.1 Electric Potential due to a Point Charge in its Surrounding	68
1.10.2 Electric Potential due to a Charge Rod	68
1.10.3 Electric Potential due to a Charged Ring at its center	69 69
1.10.4 Electric Potential due to a Charged Ring at its Axial Point	69
1.10.5 Electric Potential due to a Uniformly Charged Disc 1.10.6 Potential Difference between two points B in Electric Field	70
1.10.5 Folential Difference between two points B in Electric Field	71
1.10.8 Potential Difference in Uniform Electric Field	71
1.10.9 Electric Potential Difference due to Very Large Sized Uniformly Charged Objects	72
1.10.10 Equipotential Surfaces	72
1.10.11 Relation in Electric Field and Electric Potential in a Region	73
1.10.12 Potential difference between two Large Plane Sheets	74
1.11 Electric Potential Inside a Metal Body	82
1.11.1 Electric Potential due to a Charged Conducting Sphere	82
1.11.2 Variation Curve of Electric Potential for a Uniformly Charged Conducting Sphere	83
1.11.3 Electric Potential due to a Non-conducting Uniformly Charged Sphere	83
1.11.4 Variation Curve of Electric Potential for a Uniformly Charged Non Conducting Sphere	84
1.11.5 Charge Distribution on Metal Objects	84
1.11.6 Van de Graaff Generator	84
1.12 Electric Dipole	90
1.12.1 Electric Dipole placed in a Uniform Electric Field	90
1.12.2 Work done in Rotation of a Dipole in Electric Field	91
1.12.3 Interaction Energy of a Dipole in Electric Field	91
1.12.4 Work done in Changing the Orientation of a Dipole in Electric Field using Interaction Energy	92
1.12.5 Force on an Electric Dipole placed in Non-uniform Electric Field	92
1.12.6 Force on a Dipole placed in Surrounding of a Long Charged Wire	92
1.12.7 Electric Field due to an Electric Dipole	92
1.12.8 Electric Field at Axial and Equatorial Point of a Dipole	93 94
1.12.9 Electric Potential due an Electric Dipole at its Axial and Equatorial Points 1.12.10 Proof of Radial and Transverse Electric Field Strengths due to a Dipole using Axial and Equator	
Electric Fields	<i>uu</i> 95
1.12.11 Direction of Er and Eq in the Surrounding of a Dipole	95
1.12.12 Electric Potential due to a Dipole in its Surrounding	96
1.12.13 Stable and Unstable Equilibrium of a Dipole in Electric Field	96
1.12.14 Distributed Dipole	97
1.13. Electric Lines of Forces & Electric Flux	102
1.13.1 Characteristics of Electric Lines of Forces	102
1.13.2 Area considered as a Vector	104
1.13.3 Electric Flux	104
1.13.4 Electric Flux Measurement by Electric Flux	104
1.13.5 Positive and Negative Electric Flux	105
1.13.6 Electric Flux in Non-uniform Electric Field	106
1.13.7 Electric Flux Through a Circular Disc	106
1.13.8 Electric Flux Through the Lateral Surface of a Cylinder due to a Point Charge	107
1.13.9 Electric Flux Produced by a Point Charge	108
1.14 Gauss's Law	110
1.14.1 Electric Field Strength Calculation using Gauss's Law	111

1.14.2 Electric Field Strength due to a Charged Conducting Sphere	112
1.14.3 Electric Field Strength due to a Non-conducting Uniformly Charged Sphere	113
1.14.4 Electric Field Strength due to a Long Charged Wire	113
1.14.5 Electric Field Strength due to a Long Uniformly Charged Conducting Cylinder	114
1.14.6 Electric Field Strength due to a Uniformly Charged Non-conducting Cylinder	115
1.14.7 Electric Field Strength due to a Non-conducting Uniformly Charged Sheet	116
1.14.8 Electric Field Strength due to a Charged Conducting Sheet	116
1.14.9 Application of Gauss's Law in the Region of Non uniform Electric Field	117
1.14.10 Electric Field Strength in the Vicinity of a Charged Conductor using Gauss's Law	118
1.15 Concept of Solid Angle	122
1.15.1 Calculation of Solid Angle of a Random Surface at a Given Point	122
1.15.2 Solid Angle of a Surface not Normal to Axis of Cone	122
1.15.3 Relation in Half Angle of Cone and Solid Angle at Vertex	123
1.15.4 Solid Angle Enclosed by a Closed Surface	123
1.15.5 Electric Flux Calculation due to a Point Charge Using Solid Angle	124
1.15.6 Electric Flux due to a Point Charge Through Random Surface	124
1.16 Electric Pressure	128
1.16.1 Electric Pressure on in a Charged Metal body	128
1.16.2 Electric Pressure on a Charged Surface due to External Electric Field	129
1.16.3 Equilibrium of Hemispherical Shells under Electric Pressure	130
1.17 Distribution and Induction of Charges on Cavity Surfaces in Conductors	132
1.17.1 Electric Field and Potential due to Induced Charges on a sphere	133
1.17.2 Charge Distribution on a System of Parallel Plates	134
1.17.3 Alternative Method of Charge Distribution on a System of Large Parallel Metal Plates	135
1.18 Earthing of Charged or Uncharged Metal Bodies	137
1.18.1 Earthing of a metal Sphere	137
1.18.2 Charges on a System of Concentric Shells	138
1.18.3 Current flow due to Earthing	138
1.18.4 Earthing of Two or More Conductors Simultaneously	139
1.18.5 Earthing of a System of Parallel Plates	140
1.19 Field Energy of Electrostatic Field	144
1.19.1 Field Energy Density of Electric Field	145
1.19.2 Self Energy of a Charged Body	146
1.19.3 Self Energy of a Uniformly Charged Non-conducting Sphere	147
1.19.4 Total Electrostatic Energy of a System of Charges	147
1.19.5 Electrostatic Energy of a System of a Conducting Sphere and a Concentric Shell	148
1.19.6 Total Field Energy of a System of Conducting Sphere and a Concentric Shell	148
1.20 Dielectrics	149
1.20.1 Polarization of Dielectrics in Electric Field	149
1.20.2 Bound Charges on a Dielectric Surface in Electric Field	150
1.20.3 Polarization Vector in Dielectrics	151
1.20.4 Dielectric Breakdown	151
1.20.5 Effect of Temperature on Dielectric Constant of Medium	152
DISCUSSION QUESTION	157
CONCEPTUAL MCQS SINGLE OPTION CORRECT	158
NUMERICAL MCQS SINGLE OPTIONS CORRECT	167
ADVANCE MCQS WITH ONE OR MORE OPTIONS CORRECT	176
UNSOLVED NUMERICAL PROBLEMS FOR PREPARATION OF NSEP, INPHO & IPHO	183

Chapter 2

Capacitance

193-302

2.1 Capacitance of a Conductor or a System of Conductors	195
2.1.1 Capacitance of an Isolated Conducting Sphere	196
2.1.2 Relation in Capacitance and Maximum Capacity of Holding Charge for a Conductor	197
2.1.3 Charge Sharing between Two Isolated Conductors	197
2.1.4 Effect of Placing a Conductor near other Conductors on its Capacitance	197
2.1.5 Capacitance of a Capacitor	198

2.1.6 Capacitance of a Spherical Capacitor	199
2.1.7 Capacitance of a Sphere Capacitor	200
2.1.8 Capacitance of a Cylindrical Capacitor	200
2.1.9 Capacitance of a Wire Capacitor	201
2.1.10 Capacitance of a Parallel Plate Capacitor	201
2.2 Working of a Parallel Plate Capacitor	204
2.2.1 Charging of a Parallel Plate Capacitor	204
2.2.2 Unequal Charges on Capacitor Plates Connected across a Battery	206
2.2.3 Energy Stored in a Parallel Plate Capacitor	207
2.2.4 Heat Dissipation in Charging of a Parallel Plate Capacitor	207
2.2.5 Force Between Plates of a Parallel Plate Capacitor	208
2.3 Grouping of Parallel Plate Capacitors	214
2.3.1 Equivalent Capacitance of a Group of Capacitor	214
2.3.2 Parallel Combination of Capacitors	215
2.3.3 Series Combination of Capacitors	215
2.3.4 Combination of N Identical Capacitors	217
2.3.5 Potential Distribution in Series Combination	217
2.3.6 Effective Capacitance of a System of Parallel Plates	218
2.3.7 Variable Capacitor	219
2.3.8 Types of Spherical Capacitors	219
2.4 Nodal Analysis of Capacitive Circuits	225
2.4.1 Solving Capacitive Circuits	226
2.4.2 Step by Step Solving a Circuit Using Nodal Analysis	226
2.4.3 Alternative Way of Writing Nodal Equations	227
2.4.4 Wheatstone Bridge and its Analysis	230
2.4.5 Balancing Condition of Wheatstone Bridge	231
2.4.6 Alternative Circuit Arrangements of Wheatstone Bridge	231
2.4.7 Ladder Networks	232
2.4.8 Effect of a Multiplying factor on Equivalent Capacitance	233
2.5 Symmetry Circuits	235
2.5.1 Solving Symmetry Circuit by Nodal Analysis	235
2.5.2 Solving Symmetry Circuits Using Circuit Modification	237
2.6 Charge Distribution Between Capacitors in Series and Parallel	242
2.6.1 Charged Capacitors Connected in Series	242
2.6.2 Charged Capacitors Connected in Parallel	242
2.7 Circuits containing more than one battery	244
2.7.1 Branch Manipulation in Capacitive Circuits	245
2.7.2 Circuit Analysis Using Method of Flow of Charges	245
2.8 Effect of Switching in Capacitive Circuits	252
2.8.1 Charge Flow in a Part of Circuit due to Switching	252
2.8.2 Heat Produced due to Switching in a circuit	254
2.9 Dielectrics in Capacitors	259
2.9.1 Dielectric Insertion in a Capacitor Connected to a Battery	260
2.9.2 Insertion of Multiple Dielectrics in a Parallel Plate Capacitor	260
2.9.2 Institution of Manaple Dielectrics in a Paratient Plate Capacitor	261
2.9.4 Capacitance Calculation by Variation of Parameters	262
2.9.5 Capacitance of a Spherical Capacitor by Concept of Variation of Parameters	263
2.9.6 Bound Charges on Dielectric Surface in a Capacitor	264
2.9.7 Effect of Insertion of Dielectric Slab in a Capacitor connected to a Battery	265
2.9.8 Effect of Dielectric Insertion in a Charged Capacitor not connected to a Battery	265
2.9.9 Force on a Dielectric during Insertion in a Capacitor	266
2.9.10 Dielectric Breakdown in a Capacitor	267
2.10 Current in a Capacitor	275
DISCUSSION QUESTION	279
CONCEPTUAL MCQS SINGLE OPTION CORRECT	280
NUMERICAL MCQS SINGLE OFFIONS CORRECT	280
ADVANCE MCQS WITH ONE OR MORE OPTIONS CORRECT	283
UNSOLVED NUMERICAL PROBLEMS FOR PREPARATION OF NSEP, INPHO & IPHO	293
UNDER LD MEMERICAL I RODLEMD FOR I RELARATION OF INSEL, INFITO & IFITO	297

Chapter 3 Current Electricity

3.1 Electric Current	304
3.1.1 Drift Speed of Free Electrons	304
3.1.2 Effect of Temperature on Flow of Free Electrons in a Conductor	305
3.1.3 Current Density in a Conductor	306
3.1.4 Relation in Current Density and Drift Velocity of Electrons	307
3.1.5 Drift Velocity and Relaxation Time	307
3.1.6 Ohm's Law	308
3.1.7 Experimental Verification of Ohm's Law	309
3.1.8 Temperature Dependence of Resistivity	309
3.2 Applications of Ohm's Law	313
3.2.1 Grouping of Resistances and Equivalent Resistance	314
3.2.2 Series Combination of Resistances	314
3.2.3 Parallel Combination of Resistances	315
3.2.4 Distribution of Potential Difference in Series Combination of Resistances	315
3.2.5 Distribution of Currents in Parallel Combination of Resistances	316
3.2.6 Solving Electrical Circuits using Series and Parallel Combination Method	316
3.2.7 Resistance Calculation by Variation of Parameters	317
3.2.8 Resistance of a Spherical Shell for Radial Current Flow by Concept of Variation of Parameters	319
3.2.9 Colour Coding and Tolerances for Resistances	319
3.3 Kirchhoff's Current Law(KCL)	325
3.3.1 Applications of Kirchhoff's Current Law	326
3.3.2 Wheatstone Bridge and its Analysis	326
3.3.3 Balancing Condition of Wheatstone Bridge	327
3.3.4 Alternative Circuit Arrangements of Wheatstone Bridge	328
3.4 Symmetry Circuits	332
3.4.1 Solving Symmetry Circuit by using KCL	333
3.4.2 Ladder Network Circuits	335
3.5 Circuits Containing More than one Battery	342
3.5.1 Branch Manipulation in Resistive Circuits	342
3.6 EMF and Grouping of Cells	346
3.6.1 Internal Resistance of a Battery	346
3.6.2 Terminal Potential Difference of a Battery	347
3.6.3 Grouping of Cells in Series	347
3.6.4 Grouping of Cells in Parallel	348
3.6.5 Battery Grid	349
3.7 Kirchhoff's Voltage Law (KVL)	352
3.8 Thevenin's Analysis	361
3.9 Understanding Constant Current Sources	364
3.10 Star-Delta (Y-D) Transformation	365
3.11 Thermal Effects of Current	366
3.11.1 Thermal Power in a Resistor	366
3.11.2 Total Heat Dissipated in Resistor in a given Time Duration	367
3.11.3 Power Supplied or Absorbed by a Battery	367
3.11.4 Total Energy Conservation in an Electrical Circuit	367
3.11.5 Maximum Power Transfer Theorem	368
3.11.6 Use of Maximum Power Transfer by Thevenin's Analysis	368
3.12 Transient Analysis of RC Circuits	375
3.12.1 Analysis of Charging of a Capacitor in RC circuit	376
3.12.2 Heat Produced in Charging of a Capacitor in RC circuit	377
3.12.3 Discharging of a Capacitor through a Resistor	378
3.12.4 Initial and Steady State Behaviour of Uncharged Capacitor in RC Circuits	379
3.12.5 Initial and Steady State Behaviour of Initially Charged Capacitor in RC Circuits	380
3.12.6 Analysis of Advance RC Circuits using Thevenin's Method	381
3.12.7 Leaky Capacitor	383

391
391
392
392
392
393
393
397
397
398
399
399
400
400
407
408
412
421
424

ANSWERS & SOLUTIONS

Chapter 1	Electrostatics	431 - 484
Chapter 2	Capacitance	485 - 518
Chapter 3	Current Electricity	519 - 557

_